
The Cool Runtime System

1 Introduction

The runtime system consists of a set of hand-coded assembly language functions that are used as sub-
routines by Cool programs. Under spim the runtime system is in the file trap.handler. The use of the
runtime system is a concern only for code generation, which must adhere to the interface provided by the
runtime system.

The runtime system contains four classes of routines:

1. startup code, which invokes the main method of the main program;

2. the code for methods of predefined classes (Object, IO, String);

3. a few special procedures needed by Cool programs to test objects for equality and handle runtime
errors;

4. the garbage collector.

The Cool runtime system is in the file /usr/class/cs143/lib/trap.handler; it is loaded automatically
whenever spim/xspim is invoked. Comments in the file explain how the pre-defined functions are called.

The following sections describe what the Cool runtime system assumes about the generated code
and what the runtime system provides to the generated code. However, additional restrictions must be
placed on the generated code for use with Coolaid, a debugging tool for Cool compilers based on program
verification (see the Coolaid Reference Manual).

Coolaid specific restrictions are marked in this manner.

This document does not describe the expected behavior of Cool programs; refer to Section 13 of the Cool
Reference Manual for a formal description of the execution semantics of Cool programs.

2 Objects

The object layout describes the location of attributes, as well as the meta-data that must be associated
with each object.

Modified from Section 7 of A Tour of the Cool Support Code (c©1995-1996 by Alex Aiken). Last modified on Wed Nov
10 04:34:45 PST 2004.

1

offset -4 Garbage Collector Tag

offset 0 Class tag

offset 4 Object size (in 32-bit words)

offset 8 Dispatch pointer

offset 12. . . Attributes

Figure 1: Object layout.

2.1 Object Layout

The first three 32-bit words of each object are assumed to contain a class tag, the object size, and a
pointer for dispatch information. In addition, the garbage collector requires that the word immediately
before an object contain -1; this word is not part of the object.

Figure 1 shows the layout of a Cool object; the offsets are given in numbers of bytes. The garbage
collection tag is -1. The class tag is a 32-bit integer identifying the class of the object and thus should
be unique for each class. The runtime system uses the class tag in equality comparisons between objects
of the basic classes and in the abort functions to index a table containing the name of each class.

The object size field and garbage collector tag are maintained by the runtime system; only the runtime
system should create new objects. However, prototype objects (see below) must be coded directly by the
code generator in the static data area, so the code generator should initialize the object size field and
garbage collector tag of prototypes properly. Any statically generated objects must also initialize these
fields.

The dispatch pointer points to a table used to invoke the correct method implementation on dynamic
dispatches. It is never actually used by the runtime system, so the layout of dispatch information is not
fixed. However, Coolaid expects pointers to the methods (i.e., the labels) of an object to reside directly
in the table indicated by the dispatch pointer—not through, say, in separate table via another level of
indirection.

For Int objects, the only attribute is the 32-bit value of the integer. For Bool objects, the only
attribute is the 32-bit value 1 or 0, representing either true or false. The first attribute of String objects
is an object pointer to an Int object representing the size of the string. The actual sequence of ASCII
characters of the string starts at the second attribute (offset 16), terminates with a 0, and is then padded
with 0’s to a word boundary.

The value void is a null pointer and is represented by the 32-bit value 0. All uninitialized variables
(except variables of type Int, Bool, and String; see the Cool Reference Manual) should be set to void by
default.

For use with Coolaid, the layout of attributes is fixed (based on the annotations packaged with the
assembly code). The attributes of the parent class should come first, then followed by the new attributes
in the same order as in the source. An example of the required object layout is shown in Figure 2. For
all statically allocated objects, the attributes must be statically either void or some other value of the
declared type of that attribute.

2.2 Prototype Objects

The only way to allocate a new object in the heap is to use the Object.copy method. Thus, there must
be an object of every class that can be copied. For each class C in the Cool program, the code generator
should produce a skeleton C object in the data area; this object is the prototype of class C.

2

class Grandparent {
first : Object;

};
class Parent inherits Grandparent {

second : Object;

}
class Child inherits Parent {

third : Object;

fourth : Object;

}

offset -4 Garbage Collector Tag

offset 0 Class tag

offset 4 Object size (in 32-bit words)

offset 8 Dispatch pointer

offset 12 Attribute first

offset 16 Attribute second

offset 20 Attribute third

offset 24 Attribute fourth

Figure 2: Example: object layout for Child.

For each prototype object, the garbage collection tag, class tag, object size, and dispatch information
must be set correctly. For the basic classes Int, Bool, and String, the attributes should be set to the
defaults specified in the Cool Reference Manual. For the other classes, the attributes of the prototypes
may be whatever you find convenient for your implementation. Coolaid does require that they be set to
either void or some other value of the declared type of that attribute. This would be prudent anyway.

3 Code Generation Guidelines

While Coolaid attempts to be as flexible as possible, it must impose a few restrictions on the code
generation strategy for certain Cool constructs.

3.1 Case

Recall that a case expression provides a runtime type test on objects. The class tag uniquely identifies
the dynamic type of the object, so a reasonable strategy is to generate a series of conditionals comparing
the class tag of the object to the tags of the types specified in the branches of the case expression. Coolaid
requires that the branch of the case expression to evaluate be determined by loading the the class tag of
the object on which the case is testing and comparing that value with constants (in branch instructions).

3.2 Selftype

Generating code for the expression new SELF TYPE requires additional bookkeeping of which Coolaid must
be aware. Since we need to create an object with the same dynamic type as the self object, one possibility
is to use the class tag to determine the prototype object to copy. This can be done by creating table
of pointers to the prototype objects of each class indexed by the class tag. Coolaid expects such a table
to be present in the static data segment with the label class objTab to tell Coolaid what are the labels
for the prototype objects and the initialization methods (see Section 4 for a description of the table).
An offset into this table for creating an object with the same dynamic type as self can be computed by
reading the class tag for self, add/subtract/multiply this value by constants, and add it to the address
of class objTab.

3

Main protObj The prototype object of class Main Data
Main init Code that initializes an object of class Main Code

passed in $a0

Main.main The main method for class Main Code
$a0 contains the initial Main object

Int protObj The prototype object of class Int Data
Int init Code that initializes an object of class Int Code

passed in $a0

String protObj The prototype object of class String Data
String init Code initializing an object of class String Code

passed in $a0

int tag A single word containing the class tag for the Int class Data
bool tag A single word containing the class tag for the Bool class Data
string tag A single word containing the class tag for the String class Data

with the class tag
bool const0 The Bool object representing the boolean value false Data
class nameTab A table, which at index (class tag) ∗ 4 contains a pointer Data

to a String object containing the name of the class associated

class objTab A table, which at index (class tag) ∗ 8 contains a pointer to
the prototype object and at index (class tag) ∗ 8 + 4 contains
a pointer to the initialization method for that class.

Data

C.m Method m of class C. Code

Figure 3: Fixed labels.

4 Expected Labels

The Cool runtime system refers to the fixed labels listed in Figure 3. Each entry describes what the
runtime system expects to find at a particular label and where (code/data segment) the label should
appear. Note that though the runtime does not require a label for the Bool object representing the
boolean value true, there is no need for code that initializes an object of class Bool if the generated code
also contains a definition of the Bool object for true in the static data area.

Coolaid requires that labels for methods adhere to the following naming convention.

C.m for the code of method m of class C

Also, it requires an additional table in the data segment at the label class objTab to indicate the
addresses of the prototype objects and the initialization methods. The table should be laid out so that
at offset 8 · t is the prototype object and at offset 8 · t + 4 is the initialization method for the class with
tag t. Thus, the class objTab looks something like the following:

4

class objTab: Object protObj

Object init

IO protObj

IO init
...

assuming class Object and IO have tags 0 and 1, respectively, and with their prototype objects at the
labels Object protObj and IO protObj and their initialization methods at Object init and IO init,
respectively. A summary of the required labels for Coolaid also appears in Figure 3.

5 Register and Calling Conventions

The primitive methods in the runtime system expect arguments in register $a0 and on the stack. Usually,
$a0 contains the self object of the dispatch, and the result is also returned in $a0. Additional arguments
should be on top of the stack, first argument pushed first (an issue only for String.substr, which takes
two arguments). Some of the primitive runtime procedures expect arguments in particular registers (see
Figure 4).

Coolaid expects a similar calling convention for Cool methods. The return address should be passed
in $ra. The standard callee-saved registers on the MIPS architecture $s0, $s1, $s2, $s3, $s4, $s5, $s6,
and $s7, along with the frame pointer $fp are considered callee-saved by Coolaid, as well as the runtime
system. (Register $s7 is used by the garbage collector and should never be touched by the generated
code.) The self object must be passed in $a0, while additional arguments should be on top of the stack,
first argument pushed first. No other assumptions about the contents of the registers should be assumed
on method entry. In other words, an activation record for a method with n arguments should look like
the following:

... low addresses
argument n

argument n − 1
...

argument 2
argument 1 high addresses

One is free to design the remainder of the activation record. On method return, Coolaid expects that
the callee pops the entire activation record including the arguments. For the initializations methods,
Coolaid and the runtime system consider $a0 to be callee-saved (in addition to the callee-saved registers
for normal methods).

The following registers are used by the runtime system:

Scratch registers $v0,$v1,$a0–$a2,$t0–$t4

Heap pointer $gp

Limit pointer $s7

The runtime system may modify any of the scratch registers without restoring them (unless otherwise
specified for a particular routine). The heap pointer $gp is used to keep track of the next free word on the
heap, and the limit pointer $s7 is used to keep track of where the heap ends. These two registers should

5

not be modified or used by the generated code—they are maintained entirely in the runtime system.
Registers $at,$sp, and $ra may also be modified by the runtime system.

Coolaid expects that at every label in the code segment, the value of the stack pointer ($sp) is the
same regardless of the path of execution. For example, consider the following MIPS assembly code.

begin conditional: beqz $a0 true branch

addiu $sp $sp -12

true branch: addiu $sp $sp -16

end conditional:
...

Such a program is not allowed, as at the label end conditional, $sp has different values depending on
the branch that is taken (assuming $sp is the same on all paths to begin conditional). Regardless,
such an invariant is useful to ensure that stack slots can always be read using constant offsets from $sp.

6 Runtime Interface

Figure 4 lists labels for methods defined in the runtime system that may be called by the generated code.
Coolaid does not make any assumptions about the result of an equality test. For example, the generated
code cannot pass to equality test the address of labels in $a0 and $a1 and then jump to the result to
conditionally branch based on the equality test. This is because branches must be explicit syntactically
in the generated code for Coolaid to identify them as such.

6.1 Execution Startup

On startup, the following actions are provided by the runtime system:

1. A fresh copy of the Main prototype object is made on the heap and then initialized by a call to
Main init.

The code generator must define Main init. Main init should execute all initialization code of
Main’s parent classes and finally execute the initializations of attributes in Main (if there are
any).

2. Control is transferred to Main.main, passing a pointer to the newly created Main object in register
$a0. Register $ra contains the return address.

3. If control returns from Main.main, execution halts with the message “COOL program successfully
executed”.

6.2 The Garbage Collector

The Cool runtime environment includes two different garbage collectors, a generational garbage collector
and a stop-and-copy collector. The generational collector is the one used for programming assignments;
the stop-and-copy collector is not currently used. The generational collector automatically scans memory
for objects that may still be in use by the program and copies them into a new (and hopefully much
smaller) area of memory.

6

Object.copy A procedure returning a fresh copy of the object passed in $a0

Result will be in $a0

Object.abort A procedure that prints out the class name of the object in $a0

Terminates program execution
Object.type name Returns the name of the class of object passed in $a0 as a string object

Uses the class tag and the table class nameTab

IO.out string The value of the string object on top of the stack is printed to
the terminal.

IO.out int The integer value of the Int object on top of the stack is printed
to the terminal.

IO.in string Reads a string from the terminal and returns the read string object
in $a0.
(The newline that terminates the input is not part of the string)

IO.in int Reads an integer from the terminal and returns the read int object
in $a0.

String.length Returns the integer object which is the length of the string object
passed in $a0. Result in $a0.

String.concat Returns a new string, made from concatenating the string object on top
of the stack to the string object in $a0. Return value in $a0

String.substr Returns the substring of the string object passed in $a0, from index i
with length l. The length is defined by the integer object on top of
the stack, and the index by the integer object on the stack below l.
Result in $a0.

equality test Tests whether the objects passed in $t1 and $t2 have the same
primitive type {Int,String,Bool} and the same value. If they do,
the value in $a0 is returned, otherwise $a1 is returned.

dispatch abort Called when a dispatch is attempted on a void object. Prints the line
number, from $t1, and filename, from $a0, at which the dispatch
occurred, and aborts.

case abort Should be called when a case statement has no match.
The class name of the object in $a0 is printed, and execution halts.

case abort2 Called when a case is attempted on a void object. Prints the line
number, from $t1, and filename, from $a0, at which the dispatch
occurred, and aborts.

Figure 4: Labels defined in the runtime system.

7

Generated code must contain definitions specifying which of several possible configurations of the
garbage collector the runtime system should use. The location MemMgr INITIALIZER should
contain a pointer to an initialization routine for the garbage collector and MemMgr COLLECTOR

should contain a pointer to code for a collector. The options are no collection, generational collection,
or stop-and-copy collection; see comments in the trap.handler for the names of the INITIALIZER and
COLLECTOR routines for each case. If the location MemMgr TEST is non-zero and a garbage
collector is enabled, the garbage collector is called on every memory allocation, which is useful for testing
that garbage collection and code generation are working properly together.

The collectors assume every even value on the stack that is a valid heap address is a pointer to an
object. Thus, a code generator must ensure that even heap addresses on the stack are in fact pointers
to objects. Similarly, the collector assumes that any value in an object that is a valid heap address is a
pointer to an object (the exceptions are objects of the basic classes, which are handled specially).

The collector updates registers automatically as part of a garbage collection. Which registers are
updated is determined by a register mask that can be reset. The mask should have bits set for whichever
registers hold heap addresses at the time a garbage collection is invoked; see the file trap.handler for
details.

Generated code must notify the collector of every assignment to an attribute. The function GenGC Assign

takes an updated address a in register $a1 and records information about a that the garbage collector
needs. If, for example, the attribute at offset 12 from the $self register is updated, then a correct code
sequence is

sw $x 12($self)

addiu $a1 $self 12

jal _GenGC_Assign

Calling GenGC Assign may cause a garbage collection. Note that if the garbage collector is not being
used it is equally important not to call GenGC Assign.

8

